


% '

So in the general case, the microphysics of a cloudy volume
contain between 4 and 6 independent degrees of freedom.

Therefore, to achieve the goals, ACE must acquire measurements
that address unique moments of the PSD. «
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YearDay: | 2007/003 (January 03, 2007) — Orbits 03636 to 03650 — Products: Radar, Radar/Lidar, Microphysics. Aqua Comparison, CldForcing |Z| | Change |
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Instrument
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Critical Instrument Issues — Random Thoughts

All Instruments should be designed to operate together — boresighted with with
resolution volumes that integrate together nicely.

Radar(s):

Vertical Resolution — 250m with 2x oversampling
Horizontal — _ Cloudsat CPR
Sensitivity — W Band at least -35 dBZ
K Band — less (-25 dBZ)
Doppler Precision — 20 cm/s
Scanning - Advantages and Disadvantages

Lidar — MUST provide independent extinction. Uncertainties regarding
extinction/backscatter impose a >50% uncertainty on cloud retrievals in ice phase.

Microwave instruments should have higher spatial resolution than AMSR-E and
provide factor of 2 greater precision (20 g/m2 — LWP)

CERES-like instruments should have higher resolution.



Category Focused Questions Approach Measurement Requirements | Instrument Requirements Platform
Requirement
5
Clouds How are atmospheric and Quantify vertical cloud microphysical Determine cloud vertical Lidar Orbit at 650
and surface heating or cooling properties compatible with (but superior | structure with 120 m (or As above km for 2 day
Radiation | distributed and what cloud to) the A-train sensors through radar better) resolution and Polarimeter coverage
properties govern this and lidar observations.. estimate cloud properties of As above
distribution? water, ice and precipitation at Sun
this resolution. Retrievals synchronous
How do these radaitive must be at least as good as Cloud radar 10:30AM to
effects vary on intra-seasonal can be achieved with current | As above 2:30 PM
and interannual to decadal A-train sensors. crossing
time

time-scales?

What cloud properties that
have the most pronounced
influence on the Earth
albedo?

Specifically:

* Has the vertical
distribution of cloud
liquid or ice water
content changed since
the launch of the EOS
CloudSat and Calipso
missions?

* How does the vertical
distribution of cloud
liquid and ice water
content respond to
significant modes of
climate variability?

As abovet

High Frequency p-wave

Is the Earth radiation budget
and atmospheric heating
changing in response to
changes in the vertical
structure of clouds?

Estimate outgoing top of atmosphere
longwave and shortwave fluxes
collocated with cloud property retrievals
in order to determine the influence of
microphysics on the radiation budget of
clouds.

Combine these data with estimates of
atmospheric heating rates using cloud
properties retrievals (described in
connection with question CR-1)

Broadband longwave and
shortwave radiance
measurements with accuracy
at least as good as the
current CERES instrument.

)

As above

Low Frequency p-wave
As above

Broadband ERB

Need to co-
fly with ERB
instrument or
have
frequent
crossing
times or
include ERB
sensor on
payload
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